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Abstract. Underground media are generally affected by the initial stress of the overlying strata. At
the same time, the uncoupled interface is an important influencing factor of seismic response, as
well as an essential reservoir environment, reservoir space, and migration channel. It is significant
to explore the parameters of the uncoupled interface under stress for identifying oil and gas
reservoirs. As an effective means of predicting reservoir physical parameters, pre-stack seismic
inversion uses information on uncoupled interface fractures under stress to improve the accuracy of
reservoir parameter prediction, overcome the problem of insufficient interface parameter prediction
methods, and promote oil and gas reservoir exploration and development. Based on the precise
equations for directly characterizing uncoupled interface fracture weakness parameters, this paper
uses the ANNI inversion method to realize the nonlinear inversion method of uncoupled interface
fracture parameters. The feasibility and practicability of predicting underground medium parameters
from seismic response characteristics have been verified through model testing and actual work
area application.
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1. Introduction
Underground fractures and reservoirs are generally affected by initial stress from surrounding

rocks and overlying strata, which usually affects the medium's wave propagation characteristics and
elastic properties [1-3], The acoustoelastic theory is generally used for reasonable description and
explanation in the research process. The acoustoelastic effect refers to the change of sound velocity
(longitudinal wave and transverse wave velocity) in elastic materials under the action of the initial
static stress field. Acoustoelasticity theory is also known as third-order nonlinear elasticity theory. It
assumes that the strain energy includes the quadratic and cubic terms in the classical elasticity
theory. At the same time, the theory can also be summarized by the nonlinear constitutive
relationship between mechanical stress and effective strain in continuous medium materials.

The uncoupled interface, also called the discontinuous interface, generally refers to
discontinuous interfaces such as cracks, faults, joints, and unconformities. This interface is widely
distributed in the earth's interior and impacts the storage and migration of oil and gas. Linear slip
theory is currently the most important basic theory to describe uncoupled interfaces [4, 5], This
theory uses fracture weakness terms to describe cracks, ignores the shape and structure of the cracks,
and assumes the cracks to be a plane with no thickness. At the same time, linear slip theory can also
guide the boundary conditions of the uncoupled interface. According to the theoretical assumption,
the boundary conditions of the uncoupled interface are stress continuity, and the displacement
difference is equal to the product of stress and fracture weakness.

In pre-stack seismic inversion, although the approximate equations [6-7] and the exact equations
[8] give approximately the same results under the assumptions of weak anisotropy and small
incident angles, this assumption does not always hold [9]. The inversion results will produce
significant errors when the interlayer medium changes significantly. In this case, the results of the
approximate equations will need to be more accurate and stable, which prompted the introduction of
nonlinear inversion methods into the field of geophysics. With the development of technology,
artificial intelligence has allowed geophysicists to see new inversion tools. By combining the
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precise Zeoppritz equation with the Artificial Neural Network Inversion Tool (ANNI), it is possible
to estimate and predict the six parameters in the equation. At the same time, a new form of the exact
Zoeppritz equation was derived using methods such as Taylor expansion to reduce the difficulty of
inversion [10-13]. With the development of pre-stack nonlinear inversion methods in anisotropic
media, the MCMC (Markov Chain Monte Carlo) algorithm is used to directly perform AVO
accurate inversion, providing a reference for nonlinear inversion of anisotropic media [13]. For VTI
media, an exact equation inversion method based on isotropic reflection coefficients and linear
approximate anisotropic terms was developed [14] to overcome the anisotropy assumption in
theory.

At present, scholars have developed a variety of seismic inversion methods based on precise
equations for different media. However, more consideration is needed of the actual situation of
initial stress and the uncoupled interface. It is urgent to explore the inversion method of complex
anisotropic medium reservoir parameters based on precise equations considering the effect of initial
stress and to verify the rationality of inverting complex medium reservoir parameters from precise
seismic responses.

2. An accurate equation inversion method for uncoupled interface parameters
based on ANNI

Discontinuous uncoupled interfaces such as cracks and faults are commonly developed in actual
underground reservoirs and are essential storage spaces and migration pathways for oil and gas.
Based on the reflection and transmission coefficient equation of the uncoupled interface of
orthogonal anisotropic media under initial stress, an exact equation forward operator is constructed.
By utilizing the precise characteristics of the exact equation and combining it with the ANNI
inversion method, research on the exact equation inversion method for uncoupled interface fracture
weakness is conducted, which is beneficial to understanding the state of underground horizontal
fractures and improving the exploration and development efficiency and prediction accuracy of
shale reservoirs.

2.1 Construction of reflection coefficient equation under initial stress
The equivalent stiffness matrix is ​ ​ the most important parameter for constructing the

stress-strain relationship. Substitute the elastic parameters of the OA medium without stress in the
background medium into the equivalent elastic parameter expression based on the acoustoelastic
theory. The equivalent stiffness coefficient matrix [15] can be simplified to:

ijkl ijkl ijklmn mnC c c E  (1)

Where ����� is the equivalent stiffness matrix of the OA medium after the initial stress, and �����
and ������� are the second-order and third-order elastic tensors of the OA medium without stress in
the background medium. According to the symmetry assumption, the third-order elastic parameter
of the OA medium is �111, �112, �123, �113, �133, �144, �155, �222, �333, �344 . According to the
expression of equation (1), the equivalent stiffness coefficient of the OA medium under the initial
stress can be obtained:
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��� is the strain tensor, represented by ��� = �������� , and ��� is the vertical initial stress. The
above parameter subscripts all use the Voigt notation method, specifically 11→1, 22→2, 33→3, 32
or 23→4, 31 or 13→5, 21 or 12→6.

In order to obtain the accurate reflection coefficient of the uncoupled interface of OA medium
under stress, it is assumed that the front of the seismic wave is planes and incident at a fixed angle.

Fig. 1 Plane P-wave incidence diagram
The model is shown in Fig. 1. The upper medium is isotropic, and the lower medium is OA

medium. The vertical direction along the z-axis is defined as the positive direction. P wave
incidence will generate four types of waves, and ���, ���, ���, ���, ��� represents the incident
angles of the incident P wave, reflected P, reflected SV wave, transmitted P, and transmitted SV
wave, respectively.

According to the acoustoelastic theory, the stress term in the boundary condition can be
expressed as:

,ij ijkl kl i k kjT C e u   (3)

Where ��� is stress on both sides of the interface, ����� is the equivalent stiffness coefficient
matrix under stress, ��� is strain, which can be expressed as ��,� + ��,� , the subscript comma
represents the derivative, and ��� represents the initial stress. This section assumes the initial stress
only considers the vertical downward stress., i.e.� = (0,0, �33, 0,0,0). Where �� is the plane wave
displacement, expressed explicitly as:

 expR R R R
I I J Ju A P i s X t    (4)

� represents the imaginary term, � represents the angular frequency, ��
� represents the

polarization vector, ��
� represents the slowness vector, � represents the time, the superscript � =

(0,1,2, ⋯4) represents the type of wave, and the subscript represents the component of the
polarization vector.

In this paper, for the uncoupled interface, based on Schoenberg linear slip theory, it is assumed
that the boundary conditions are stress continuity, displacement discontinuity, and the displacement
difference between the upper and lower media is linearly correlated with the stress. Specifically, it
can be expressed as:

3 3( ) ( ) 1,3up low
i i

u ZT
T T i

 

 

；
(5)

Equation (5) can be expanded in two dimensions as follows:
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(6)

Where ��，�� is the normal and tangential fracture parameters respectively, expand (6) and
organize them into a matrix form:

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1 2 3 4

;

[ ];PP PS PP PS

GR M
g g g g
g g g g

G
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
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 
 





(7)

The specific representation of the elements in the matrix is:

     
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 





         

 

     

     

 3

1 1 2 2
31 55 1 3 3 1 32 55 1 3 3 1

3 3 4 4
33 55 3 1 1 3 34 55 3 1 1 3

1 1 1 2 2 2
41 31 1 1 33 3 3 3 3 33 42 31 1 1 33 3 3 3 3 33

43 31

;
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(8)

Where ���� represents the elastic parameter of the upper medium, ���� represents the elastic
parameter of the lower medium, ��� , ��� , ��� , ��� , ��� are the polarization directions of the
incident P wave, reflected P, S wave, and transmitted P, S wave, respectively. The superscripts 0 to
4 correspond to the incident P wave, reflected P, S wave, and transmitted P, S wave, respectively.
Subscripts 1 and 3 correspond to the components in the two directions. Finally, the matrix inversion
is used to obtain the accurate reflection and transmission coefficients:

1R L M (9)

2.2 Inversion of the exact equations of the uncoupled interface parameters under initial stress
Since the exact PP wave reflection coefficient solved by the exact equation is an explicit

expression expressed by parameters, it would be very complicated to solve it directly. At the same
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time, it can be found through observation that the fracture weakness of the uncoupled interface of
the inversion parameter is not included in the medium-related parameters such as stiffness
coefficient, polarization or slowness, so it is assumed that:

0 0 1 1 1 1
0 55 1 3 3 1 1 55 1 3 3 1 2 55 1 3 3 1

3 3 4 4
3 55 3 1 1 3 4 55 3 1 1 3

0 0 0 1 1
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     
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According to the new assumption, G and M in the matrix (8) can be simplified to:
       

 
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By solving the above equation, we can obtain the solution of the exact equation of the

uncoupled interface PP wave reflection coefficient under the action of initial stress.

1 1 1 1
2 1 2 1

2 2 2 2

, ,PP
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  
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Where:
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The PP wave reflection coefficient of a two-dimensional uncoupled interface is expressed as:
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(14)

3. Model testing and actual work area application
(1) Model testing
In order to verify the feasibility of inverting the weakness of uncoupled interface fractures using

the ANNI method, data from a fractured reservoir work area were selected to extract single-channel
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seismic data for single-channel testing. A 30 Hz Ricker wavelet was used according to the central
frequency of the actual work area seismic, the primary frequency was 30 Hz, the incident angle was
assumed to be 1o~30o, and the initial stress was 20 MPa. In order to verify the stability, Gaussian
random noise with signal-to-noise ratios of 2: 1 and 5: 1 was added, respectively. Fig. 3-1 shows the
inversion results of the two fracture parameters under different signal-to-noise ratios.

In the inversion process, reasonable interpolation and extrapolation are performed in
combination with the anisotropic parameters in the actual well, and the equivalent stiffness
coefficient, slowness, polarization and fracture parameters are calculated using the anisotropic
parameters and velocity density. The fracture parameters are smoothed and used as a low-frequency
model to constrain the inversion results. In the initial stage, the range of the fracture parameters to
be inverted and the number of parameters to be inverted are input. ANNI randomly generates an
initial model that meets the number of parameters to be inverted within the range according to the
range of parameters to be inverted and the number of parameters to be inverted, and then
continuously cyclically corrects and finally obtains the inversion result. In the figure, the red dotted
line represents the inversion result, the blue curve represents the actual data, and the black curve
represents the input low-frequency model.

(a) Noise-free (b) Signal-to-noise ratio 5: 1 (c) Signal-to-noise ratio 2: 1

Fig. 3-1 Model inversion results with different signal-to-noise ratios

(2) Application in actual work areas
In order to verify the feasibility of the accurate equation inversion method in the actual work

area, a fractured shale reservoir work area was selected. According to the well logging data, the
well interpolation was reasonably extrapolated to obtain the Thomsen anisotropy parameters of the
OA medium in the work area. The slowness, polarization, and other parameters required to solve
the equation at different incident angles and azimuths can be obtained on this basis. The parameters
that are independent of the parameters to be inverted are used. We are using the sub-waves
extracted from the work area and combining the work area information, assuming that the
frequency is 30 Hz and the incident angles are 10o, 20o, and 30o. Fig. 3-2 shows the inversion
profiles of the two fracture parameters, where the black curve is the well curve.

(a) Incident angle 10o, N inversion profile (b) Incident angle 10o, T inversion profile
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(c) Incident angle 20o, N inversion profile (d) Incident angle 20o, T inversion profile

(e) Incident angle 30o, N inversion profile (f) Incident angle 30o, T inversion profile
Fig. 3- 2 Results of profile inversion

It can be seen from the inversion results that the inverted interface parameters have a strong
reflection in the target area near the well, which is consistent with the understanding of the work
area here. In contrast, outside the target area, there are relatively scattered and chaotic reflections,
which verifies the rationality of the method.

4. Summary
Aiming at the inversion problem of OA medium under initial stress, the particular boundary

conditions of the exact equation are used to construct the exact reflection coefficient equation and
simplify the parameters irrelevant to the inversion, which further enriches the parameter types of
pre-stack seismic inversion and contributes to overcoming the problem of insufficient consideration
of interface parameter prediction. It can be seen from the inversion results of the model that the
inversion results are in good agreement with the fracture parameters obtained by logging. Among
them, the effect of the normal fracture parameters is due to the tangential fracture parameters. The
profile inversion results compare the target layer and the non-target layer. There is a pronounced
interface parameter response near the target well, and it is scattered reflection in the non-target layer.
Through model testing and actual data application, the feasibility of this method in predicting
fracture and stress parameters has been verified. However, due to the strong nonlinearity of the
inversion operator and the large number of parameters to be inverted in the equation, further study
is needed to enhance the reliability and stability of shale reservoir parameter prediction.
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