
174

Phase Field Crystal Methods for Bilayer Graphene
Kai Liu

College of education for the future, Beijing Normal University, at Zhuhai, China.
liuk@bnu.edu.cn

Abstract. Bilayer graphene has been a subject of intense study in recent years. We extend a
structural phase field crystal method to include an external potential based on the generalized
stacking-fault energy that accounts for the effect from a bottom layer of graphene. Both of the
favored stacking variants are found with randomly generated initial phase fields. Using the width of
the boundaries between different stacking variants as a function of the interactions between the two
layers, we quantify the exact strength of the external potential by comparing the phase field crystal
simulations with the results from atomistic simulation. We simulate a circular grain of one stacking
phase enclosed by the other and find that, depending on the initial phase field, the center domain
may shrink to form a uniform stacking phase, or may evolve to a relaxed state of a hexagon region
or a triangular region that at each vertex the graphene structure is defected.
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1. Introduction
Graphene, a single layer of carbon atoms tightly bound in a hexagonal honeycomb lattice, is one

of the most exciting new two-dimensional materials discovered. Bilayer graphene, consists of two
coupled single layers of honeycomb crystal structure of carbon atoms, has attracted a great deal of
attention because it can exist with a variety of stacking arrangement with intriguing electronic
properties [1,2,3,4,5].

Computational modeling can serve as a route for theoretically understanding the
difficult-to-measure properties of graphene. On the continuum scale, the phase field crystal (PFC)
modeling approach describes the thermodynamic and dynamic of phase transformation through an
atomically varying order parameter field that is loosely connected to the atomic density field. The
original PFC model was predominately used for the study of 2D triangular and three-dimensional
(3D) crystal symmetries [6, 7]. It is a promising and widely used approach for modeling many
microstructure phenomena. Recently, PFC has been used to study how anisotropic diffusion of
carbon on a surface can yield the formation of the dendritic graphene structure [8]. By including a
rotationally invariant three-point correlation function for the excess free energy, a structural PFC
model was set up to address both the atomically varying defect and microstructures of graphene and
its nucleation and diffusional growth kinetics from a disordered state on a surface [9].

In this paper, we build a new PFC model for bilayer graphene by extending the structural phase
field crystal method in [9]. Following [9], we use a structural PFC model that includes both
two-point correlation kernels and three-point correlations in the nonlocal part of the free energy. In
order to model the effect of a second layer of graphene on the layer we are modeling we introduce a
local interaction between the order parameter density and an external potential. We will refer to the
external potential as the bottom-layer potential. The most relevant physical picture would be when
the bottom graphene layer is completely fixed after deposition on a substrate, and the layer we are
modeling is deposited on it. The bottom-layer potential is chosen based on first-principles
calculations of the generalized stacking fault energy (GSFE) in bilayer graphene from reference
[12]. The GSFE is the energy landscape seen when one layer of graphene is moved laterally and
uniformly with respect to the other layer. The fitted form of the GSFE in reference [12] is such that
a bottom-layer potential of the same form (but different coefficients) applied in an atomistic
calculation would reproduce that GSFE exactly. We have used that bottom-layer potential in the
PFC model, but multiplied by an arbitrary parameter, which we fit to molecular dynamics (MD)
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simulations. The MD model is validated by comparison with experimental results, as discussed
later.

In the numerical simulations, we first test the growth of graphene phases without the
bottom-layer potential by choosing parameters corresponding to the solid region of the phase field,
i.e. ensuring the periodicity for each side of the rectangular domain and initializing the system with
Gaussian noise. The results agree with [9]. We then add bottom layer potential and again start with
Gaussian noise and generate both the AB and BA stacking, where AB and BA stacking have one of
the first layer's sublattice atoms (A or B) directly on top of its opposite sublattice atom ( B or A ) in
the second layer, called AB or BA stacking, respectively, or collectively called Bernal stacking
[13].

Next we test the case of a long narrow ribbon domain. The initial condition consists of 4 parts,
continuous AB and BA region each of nearly 50% of the entire domain respectively and two narrow
transition between them each is set to be a constant with small Gaussian perturbation. We find four
transition types, depending on the angle

between the transition region and the shifting direction, 0^ ∘ ,30^ ∘ ,60^ ∘ , and 90^ ∘ . By
comparing with the simulation results from atomistic methods, we quantify the strength of the
bottom layer potential by the width of the transition region for each type of transition.

We then test the case of a circular AB vs BA stacking. With constant transition region, the center
part (even a relatively small one) may evolve to a triangular or hexagonal shape with at least one
5-7 defective ring on each vertex. On the other hand, with uniformly smooth transition from AB to
BA, the area of the center part will shrink at a constant speed (even for a relatively large disk).

The simulations are numerically expensive that it takes a long time, i.e. 3-7 days, to reach a
steady solidification. In order to solve the system in a large domain efficiently, we use a CUDA
C/C++ programming on Nvidia Quadro GV100, which runs about 2 orders of magnitude faster than
the normal CPU.

2. Modeling and Method

2.1 Modeling

We incorporated a generalized stacking-fault energy into the structural PFC model [9,12]. Let ρ
describe the spatial phase density of carbon atoms. A dimensionless density field is then defined as
ψ = (ρ − ρ�)/ρ� , where ρ� is the mean value of ρ. The free energy of a crystallizing system reads as

�total = �id � + �ex,2 � + �ex,3 � + �GSFE � (1)

where Fid is the ideal free energy, Fex,2 the two-point interactions, Fex,3 the three-point
correlations [9], and FGSFE(x) the generalized stacking-fault energy of graphene [12]. Fid is given
by
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where η and χ are dimensionless parameters and we simply set η = χ = 1 . The two-point
interactions is given by

�ex,2 =−
1
2 � � � � �2 � − �' � �' ��'�� (3)

Here C2 is the two-point correlation function defined as [9]
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where r0 sets the cutoff for the repulsive term, R sets the magnitude of the repulsion, and

����(�) = 1, � ≤ 1,
0, � > 1. (5)

The three-point correlations is governed by

�ex,3 =−
1
3 � � � � �3 � − �', � − �'' � �' � �'' ��'��''�� (6)

Here
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where Cs
(i) in polar coordinate reads as [9]
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Here X is a parameter defining the strength of the interaction, a0 corresponds to the lattice
spacing and r0/a0 = 1.22604, and m = 3 defines bond order of the crystal phase. For the graphene
system, R = 6 and X−1 = 0.4 [9].

The generalized stacking-fault energy reads as
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where as is the distance between two nearby minimum points, i.e., two nearby holes on the bottom
layer of graphene. c0 = 21.336, c1 = 12.254, c2 =− 1.128, c3 =− 0.286, c4 = 3c1 , and c5 =−

3c3 [12]. Note that λ is a parameter measuring the strength of the GSFE. The GSFE substrate
potential when λ = 1 is shown by Fig. 1, where the maximum and the minimum points are the
location of carbon atoms and center of the holes on the bottom layer correspondingly.

Given as = 3dc , where dc is the distance between two nearby atom centers. In the structural
PFC model [9], dc = 3

2π
a0 , therefore, as = 3a0/2π. Finally, the evolution of the density n, which

is a conserved order parameter, is governed by

∂�
∂�

= ��∇2 ��total

��
(10)
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where Mψ is an effective mobility that scales of the diffusional dynamics of ψ and we set Mψ = 1
for convenience.

2.2 Numerical Methods
We use a discrete Fourier transform (DFT) method to solve Eq. (8). The two points correlation

structure Fex ,2 is computed by [9]
∂�ex,2

∂�
=− � �2 � − �' � �' ��' ≡− �2 ∗ � (11)

where ∗ is a convolution in the domain, and in the reciprocal space

�� 2(�) =− 2��1 �0� /�0�, � = �1
2 + �2

2 (12)

where Jm are the Bessel functions of the first kind, and k1, k2 are the modes in the 2D reciprocal
space. The three points correlation structure C3 r − r', r − r'' is separated to

�3 � − �', � − �'' =
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The Fex,3 is then computed as [9]
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where C� s
(1) k, θk = Ximcos  mθk Jm ka0 , C� s

(2) k, θk = Ximsin  mθk Jm ka0 , and k =

k1
2 + k2

2, θk = arctan  k2
k1

.

To incorporate the FGSFE , we need to ensure FGSFE(x) is periodic for each side, i.e., the aspect
ratio of the rectangular domain must be n1: 3n2 , where n1 and n2 are positive integers. For

rectangular domain L × 3L , by setting k = k1
2 + 3 × k2

2, θk = arctan  3×k2
k1

, C2 and Cs
(i)

functions are then of circular shapes. Note that the Laplacian operator also needs to be scaled to
ensure that the diffusion is invariant of direction.

Since we solve the system in a large domain, e.g., NX × NY = 1024 × (32 × 1024) . FFT is
extremely efficient by GPU parallelization, since the bandwidth of the memory is the bottleneck of
the performance for FFT algorithm. Here we use a CUDA C/C++ parallel programming to
accelerate our algorithm, which runs about 2 orders of magnitude faster than normal CPU version.
The Nvidia Tesla K40 is used, whose memory bandwidth is 288 GB/s.

3. Results

3.1 Preliminary test of the model.

We set the initial phase diagram ψ(x, 0) = 0.3 + �(x) , where �(x) is a spacial uncorrelated
scaler field of Gaussian noise with mean 0 and standard deviation 0.001. When FGSFE = 0 , i.e.,
λ = ∞, the graphene evolves to a defected structure that agree with [9]. Then we set λ = 500 and
the initial phase diagram ψ(x, 0) = 0.3 + �(x) that the graphene evolves to a neat structure and it
takes shorter time to reach such an equilibrium.

Next we simulate a group of samples by setting λ = 500 and initial phase diagram again
ψ(x, 0) = 0.3 + �(x) with different random seeds. We find both AB and BA stacking phases [13],
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as shown in Fig. 1. In the left picture of Fig. 1, we plot the bottom layer that the carbon atoms are
classified into two categories with one group colored by lighter green and the other by darker green.
One lighter green atom is near to three darker atoms and vice versa. In Fig. 1(b), we plot AB
stacking order where the upper layer atoms locate above the darker green atoms and the center of
the hexagons, comparing with BA stacking, plotted in Fig. 1(c), where the upper layer atoms locate
above the lighter green atoms and center of hexagons.

Fig. 1 (a) Bottom layer atoms are classified into 2 groups, one denoted by lighter
green and the other darker green. (b) Phase distribution for AB pattern when � =
500. (c) Phase distribution for BA pattern.

3.2 The transition between the �� and �� stacking order

Given a long ribbon of bilayer graphene, where AB phase and BA phase are of equal length, we
investigate the transition between them. The initial conditions is a static setup where there are 4
parallel stripes X − Y − Z − W . X represents the stacking order AB, Z represents the stacking order
BA, and Y, W are disordered. The X and Z region grows as the dynamics start and two interfaces will
be created between them. We find that the interface depends on the constant λ, i.e. the strength of
the GSFE. This allows one to tuning λ by comparing the width to the one from atomistic
simulations and experimental results. There are 2 boundaries: one from AB to BA and the other from
BA to AB.
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Fig. 2. Fitting of the transition width by � = arctan (exp (��/�)) for the left
region and the right region

We then compute the thickness of the transition region. Define a parameter d = mean  dLi that
measures the distortion between substrate potential FGSFE(x) and the graphene field ψ(x) , where
dL is the nondimensionalized x − y plane distance between the center of one group of atoms on the
bottom layer and the nearest atom centers on the top layer at xi. We set d = 1 for AB pattern and

d = 0 for BA pattern. The data is then fitted by the function d = arctan  exp  πL
W

, where W is a
fitting parameter stands for the thickness of the transition region. The real width (full width at half
maximum) is a little smaller, nevertheless we use W for convenience. As shown in Fig. 2, W90 >
W30 given the same FGSFE(x), which agrees with previous results [13].

We then quantify the coefficient λ. Start from ψo(X), we use bisection method to pin down the
value of λ , i.e. λ0 = 10000, λ1 = 5000, λ2 = 7500, … We compare the value of Wλ

0 and Wλ
90

with the atomistic results, that if the relative difference between the PFC results and atomistic
simulation results are smaller than 5% for all the cases, we accept that λ. We did not use the value
of Wλ

±30 or Wλ
±60 since the domain is a narrow ribbon that the exact direction of the transition

region is not quite precise for those two cases. By this procedure, we found that λ = 7500 is a
proper value, considering all the three cases W0 and W±90 , as shown in Fig. 3. Note that for a
single value of λ our PFC results agree reasonably well with atomistic simulations.

Fig. 3. (a) the relation between the dislocation direction and � when � = 7500 .
The AB to BA transition enforce the atoms on the top layer (pink balls) to move
along the dashed arrow. Therefore, case (b) is elongation ( + ) , and case (c) is
compression (-).

3.3 A circular shape transition between AB and BA
Another good setup to investigated into is the dynamics of a (circular) disk shaped grain of one

stacking order, with the rest of the cell the other stacking order. One expects the circular grain to
shrink and the final configuration to be a uniform stacking order. But that is not what observed in
the experiments. The initial phase diagram is created following Fig. 4. Here we set a = 8as, b =
16as, and c = 64as.
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Fig. 4. A script of the initial phase diagram for the circular shape.
The simulation reaches an equilibrium where the BA stacking order region is similar to a

hexagon, as shown in Fig. 5 (a). The outer region is of AB stacking order, and interior region is of
BA stacking order. The direction of the hexagon region is in consistent with the orientation of the
atomic alignment on the bottom layer. Note that the small regions on the six vertices of the large
hexagon is obviously different from nearby parts, and those verticescan be classified into two
categories.

In Fig. 5 (b), we plot the phase diagram of the zoomed in patch whose position is denoted by the
red dashed rectangle in Fig. 5 (a). This patch includes 2 nearby vertices of the large hexagon. In Fig.
5 (c) and (d), we zoom in again and plot in detail of the phase diagram, with black and red circles
denoting the atoms on the bottom layer. By careful scrutiny, we find that in the left sub-patch there
are well-structured BA stacking parts on the bottom-right corner and in the right sub-patch there are
well-structured AB stacking parts on the top, which agrees with Fig. 5 (a). Also note that in Fig. 5
(c) and (d), there are defective regions, and they will not disappear. This partially explains why the
center region will not shrink to zero.

Fig. 5. (a) The whole domain for the final equilibrium state. (b) The phase diagram
of the zoomed in patch from (a). (c) Phase diagram for the left sub-patch with black
and red circles denoting the atoms on the bottom layer. (d) Phase diagram for the
right sub-patch with black and red circles denoting the atoms on the bottom layer.

4. Conclusion
We build a new PFC model to include generalized stacking-fault energy that account for the

effect of a bottom layer of graphene. In order to ensure the periodicity, we scale the parameters to
extend the model to fit a rectangular domain of n1 × 3n2 , where n1, n2 are integers. A special
simulation strategy is used to attain computational efficiency, even if an efficient GPU
parallelization is implemented.

We first test the algorithm by setting λ = ∞ , i.e. no substrate potential, and λ = 500 , which is
more than 10 times of the appropriate substate potential. We find both AB and BA stacking phases,
and a defective phase state will evolve to an ordered state quickly by adding the substrate potential.
Those simulations agree with previous numerical works and experiments qualitatively.

We then quantity the scaling coefficient λ. Using the width of the transition region between AB
and BA stacking order and a function of the strength of the substrate potential FGSFE , we pin down
the value that when λ = 7500 the PFC results agree with the atomistic results for all the four
transition angles, 0∘, 30∘, 60∘, 90∘, elongated or compressed.
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Unlike our intuitive expectation, the circular grain of one stacking order enclosed by the other
stacking order, will not shrink to a uniform stacking order. But the center disk will evolved into a
hexagon with six vertices specifically defected.

A potential future work is to use the phase diagram ψ(x), as the FGSF E. Then the effect of the
top layer onto the bottom layer could be defined in a similar way. By doing so, both layers could
evolve, and the compression-elongation difference might disappear.
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