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Abstract: For the bridges equipped with health monitoring systems, it is essential to precisely
assess the health status of the bridge from the data with noise and outliers. An improved Gaussian
mixture model clustering algorithm is used to process the obtained bridge strain sensor monitoring
data and generate the characteristic data of clustering in order to improve the accuracy of data
analysis of bridge health monitoring system. The cluster and feature data are obtained by
Expectation Maximization process, and the isolated clusters are filtered out by the threshold
parameters of weight and the Euclidean distance between clusters center. Based on the feature
data, a scoring strategy is established to assess the bridge health and sensor status. The proposed
strategy is used to analyze the monitoring data of a bridge in western China, and the analysis
results show the availability of this strategy. Compared with the directly collected data, the
processed bridge health scoring curve variation is smooth, which can reduce the influence of noise
and abnormal data. The sensor status scoring curve can track changes in collected data and
respond to different transformation scenarios. This shows that the proposed strategy can evaluate
the state of this bridge and the sensors. provided a reference for bridge maintenance decision
during the operational period.

Keywords: Continuous steel structure bridge; Gaussian mixture model; structural health monitoring;
bridge health assessment.

1. Introduction
After more than 20 years of development, the Bridge Health Monitoring (BHM) system in

China has effectively used technologies such as structural damage monitoring and digital twin to
greatly improve bridge safety [1-2]. The safety assessment mechanism established in the early
warning of damage continues to be a focus of current research. Various approaches, including
autoregressive models, wavelet energy entropy, Bayesian models, deep learning, etc., have been
employed to formulate theories for monitoring damage and to develop assessment models [3-10].

At present, there is a lack of a readily transferable and standardized model for real-time
diagnostic evaluation. Additionally, few studies have focused on models that capture the correlation
between sensor data. Therefore, this study proposes an early warning strategy based on an improved
Gaussian mixture model clustering algorithm, which is designed for monitoring the health status of
bridge. First, the acquired bridge sensor monitoring data is processed to generate clustering feature
data. Then, a sensor and bridge health scoring strategy will be developed based on this feature data.
The effectiveness of the strategy is validated by analyzing monitoring data from an operational
bridge.
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2. Algorithm principle and analysis strategy
2.1 Mathematical Theory of Gaussian Mixture Model

The data returned can be conceptualized as a sequence of data streams of dimension m,
representing the number of strain sensors, when a strain sensor monitors a bridge. The Gaussian
Mixture Model (GMM), originally introduced by C. Stauffer et al.[11], is adept at handling data
streams in the form of images with pixel data types, statistical data distributions, and multi-point
clustering. In the GMM algorithm, the final segmentation clustering result can be obtained with the
center point being the mean of each Gaussian distribution, as long as the number of required
clustering results is known, The probability density function of a multivariate Gaussian distribution
for an m-dimensional feature vector x is given by:
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Here, π is the weight of the cluster, μ is the cluster center, Σ is the covariance of the cluster and
|�| is the determinant of the covariance matrix.

Assuming there are total K components, each component i represents a multivariate Gaussian
distribution. The mixture model constitutes a weighted sum of multiple Gaussian models:
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Here, �� is the weight of the i-th component, and ��(�) is the probability density function of
the i-th component's multivariate Gaussian distribution.

To estimate the parameters of the GMM, it is necessary to calculate the probability that each
sample belongs to each component. �� , �� and �� are determined by repeated iteration, so the
Expectation Maximization (EM) process is introduced and the derivatives of �� , �� and �� are
calculated respectively. That is, E-step and M-step, and repeat the calculation of E-step and M-step
until convergence, as shown in Equation (3) to (6):

E-step: Based on the existing parameters, the likelihood of each data coming from a sub-model
is calculated：
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Here, ��
(�) is the probability that the i-th component belongs to the n-th cluster sample,

�� �(�) is the probability density function of the i-th Gaussian component.
M-step: Calculate the model parameters of the new iteration, calculate the derivative and set

the derivative to 0 to obtain, as Equation (4), (5) and (6):
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2.2 Algorithm Design
In the context of long-term analysis, the occurrence of false positives or offsets during the

actual data collection process is inevitable. Individual sensors often generate short cycle abnormal
points, possible reasons being continuous changes in the state of the bridge itself or the deviation of
the measurement of the sensor itself. Therefore, the algorithm design should be based on the
analysis mean values, mean square deviations, time series characteristics and isolated values
screening. The pseudo-code of the algorithm is given as follows:

Table 1. Clustering pseudocode

Notes

Input: the collected data X with upper limit r, the
weight threshold w_acc, the distance coefficient d,
the real-time data new_X
Output: cluster center coordinates Mu, cluster
covariance matrix Var
def Value_GMM (new_X)：
If_not_define:
Mu, Var, W = GMM_Init(); Initializing the cluster center Mu, the covariance

Var, the weight of each data W
Mu_point = Count_Statistics(W, w_acc); The weight W and the weight threshold w_acc are

used to distinguish each point belonging to a
cluster, and the number Mu_point of each point in
the cluster is counted. If Mu_point is 0, the
isolated cluster will be removed

For x in range(len(Mu_point)):
If(M_point(x) == 0):
Remove_cluster();

For y in range(len(M_point)): Calculate the Euclidean distance between the
real-time data new_x and Mu. If the distance
exceeds the distance coefficient d, a new cluster is
added

If Distence(new_X, Mu[y]) > o:
New_cluster();

Mu, Var, W = EM(list(X)); Repeat the E-M procedure
Return Mu,Var

Here, the distance coefficient d and the weight threshold w_acc are introduced to improve the
speed of convergence rate and clustering accuracy.

The health status of the sensor is revealed by apparent through the return value of the Gaussian
distribution variance (Var), which indicates the dispersion and correlation in the corresponding
dimension. Typically, a larger Var in the cluster implies a more scattered distribution, suggesting
the presence of interference in the analysis of the sensor data. The correlation coefficient is used to
represent the sensor health score if the sensors are correlated and the changes are synchronous:
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Here, m is the actual coordinate dimension.
The health of bridge is reflected by the location of the cluster center. The confidence rating of

the safe state is then calculated by the following formula:
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Here, ������ is the number of points corresponding to cluster n and is the coordinate value of
the cluster center in the l-th dimension. It is assumed that a higher score indicates a safer condition
of the bridge.

3. Examples of data analysis
This study is based on the BHM system data of a continuous steel structure bridge in western

China. The bridge is a three-span bridge, as shown in the Fig. 1. The data acquisition architecture is
shown in the Fig. 2, and the sensor group is shown in the Fig. 1[10]. The data was cleaned and
pre-processed at the edge device based on time domain, frequency domain, correlation, trend and
mode analysis.

Fig. 1 Arrangement of measuring points for box girder bridge

Fig. 2 Data acquisition and transmission framework
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The data from two strain sensors located in the middle of section 1-2, as shown in Fig. 1, were
selected for analysis in this experiment. there were collected over a period of two weeks, from
December 23 to January 5, 2023, resulting in a total of 168 data points per group. The previous
week’s data was used for parameter tuning, while the following week's data was used for
verification and comparison.

The degree of agreement of the parameter value can be described by the standard deviation of
the sensor health status score (SDS) and the bridge health status score (SDB). In the normal
operating state of the sensor, the data fluctuation is small, and the corresponding score standard
deviation is smaller. According to the pre-experiment, the value of the parameter w_acc as shown in
Table 1 may cause the method to divide by zero or lose the dimensionality reduction features, so the
value of w_acc should be selected first. The mean square error is the smallest when the value of
w_acc is 0.85, as shown in Table 2.

In general, as the value of d decreases, the number of clusters increases accordingly. The
number of clusters reflects their dimensional characteristics, each cluster is more likely to capture
the original details in the original data. Reducing the number of clusters means that the data is
merged more, which means that some detail is lost, even though its dimensionality reducing
properties are better. The clustering evaluation effect with d=0.6 is more appropriate and
corresponds to the actual situation, as shown in Table 3.

Table 2. Effect of the value of w_acc on the mean square deviation of the sensor health status
score and the bridge health status score when d = 0.6

Value SDS SDB
w_acc ≤ 0.7 -- --
w_acc = 0.75 0.1424 0.0343
w_acc = 0.8 0.1420 0.0351
w_acc = 0.85 0.1060 0.0248
w_acc = 0.9 0.1521 0.0778
w_acc ≥ 0.95 -- --

Table 3. Effect of the value of d on the mean square deviation of the sensor health status score
and the bridge health status score when w_acc = 0.85

Value SDS SDB
d=0.4 0.1709 0.0408
d=0.5 0.1149 0.0249
d=0.6 0.1060 0.0249
d=0.7 0.1075 0.0242
d=0.8 0.0738 0.0439
d≥ 0.9 -- --
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Fig. 3 Sensor state score and bridge state score responses for two different input cases

The data returned by the bridge strain sensor in the second week and the variance of the two
sensors is shown in Fig. 3. The two sensors are located close to each other, which indicates a high
degree of correlation. Here, two different simulation experiments are designed to simulate different
inputs and observe the response. The burst fracture situation was simulated, and the input value was
added to 10 in one step, as shown in Fig. 3 (a). As well as the simulated case of a sensor offset case,
the input value was added to 2 in 30 steps, as shown in Fig. 3 (b). The change is made starting from
the 169-th data point, the change point in Figure 3, and the response of the score output to the
change is observed.

The simulation results are shown in Fig. 3. The scoring strategy is highly sensitivitive to
changes in the health of sensors. As shown in Fig. 3(a), the ratings respond to instantaneous
changes and decay to the normal value in the short term. In Fig. 3(b), the score shows a continuous
upward trend when the sensor receives a continuous and gradually changing ramp signal. At the
same time, when the sensor synchronization changes, the absolute value of the score increases
correspondingly, reflecting a certain correlation. In the state change of bridge health, comparing the
plots of Fig.3 (a) and (b), the reduction of the score increases accordingly when the input value
changes more, indicating that the slope can effectively show the changes in the health status of the
bridge, and the scoring system has the ability to mitigate external disturbances to some extent. This
confirms the availability of the scoring strategy.

4. Summary
This study analyzed the shortcomings of the existing BHM system in damage warning and the

analysis strategy and evaluation method of sensor health status and bridge health status based on
Gaussian mixture model clustering are proposed. The evaluation results under different parameters
are compared with the analysis of two weeks of bridge strain sensor data, and the results show the
availability of this strategy.
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In the next research plan, the algorithm and the evaluation model will be optimized, all sensor
data will be added for a comprehensive evaluation, and the reliability of the method will be verified
based on long-term data.
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